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Directional acoustic radiation from a supersonic jet 
generated by shear layer instability 
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A theory on the generation mechanism of directional acoustic radiation from 
a supersonic jet is proposed. The theory is based on the concept of instability of 
the shear layer at  the boundary of the jet close to the nozzle. Theoretical predic- 
tion of the directional wave pattern is found to agree with shadowgraphic 
observation. 

1. Introduction 
Shadowgraphs taken recently on the sound field pattern of a cold supersonic 

jet (see Lowson & Ollerhead 1968; Dosanjh & Yu 1969) show that strong direc- 
tional waves are emittedfrom the shear layer close to the exit of the jet (figure 7 ) ,  
plate 1). On the shadowgraphs these waves appear more or less as parallel straight 
lines when the jet is operating in its design, shock-free condition. When the jet is 
operating at  an off design condition, i.e. an underexpanded or an overexpanded 
jet, these waves still appear essentially as straight lines, even though a slight 
curvature is often noticeable. These waves are found to propagate away from the 
jet in a downstream direction. In  a rather puzzling manner these waves seem to 
exist only in a limited region of space downstream of the nozzle. They are never 
found beyond a certain acute angle measured from the jet boundary. 

In  this paper we wish to propose a theory on the mechanism by which these 
intense, directional waves are generated. Our proposal is that these waves are the 
direct consequence of shear layer instability at  the jet boundary close to the 
nozzle. Inside the nozzle it is clear that the flow is full of small disturbances. 
When these disturbances are convected outside, they become capable of exciting 
the unstable mode of the shear layer at  the boundary of the jet. The instability so 
excited causes the emission of the directional waves forming the characteristic 
pattern observed in shadowgraphs. 

In  the past, the stability of a plane vortex sheet has been studied by Landau 
(1944), Hatanaka (1949)) Pai (1954), a l e s  (1958) and Fejer & Miles (1963). 
These authors concluded that under certain conditions a thin shear layer or vortex 
sheet is unstable. The mathematical theory of vortex sheet instability was 
rigorously solved by Miles who rejected the spurious roots found by the other 
authors. Miles obtained a formal solution to the initial-value problem for a plane 
vortex sheet in an inviscid fluid by means of the transform method. His solution 
predicts that if the vortex sheet is disturbed by a spatially sinusoidal disturbance 
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initially, a t  any fixed point in space, the disturbance will grow exponentially in 
time in the unstable case. Clearly, this solution is not appropriate for the present 
jet noise problem. The observed wave pattern does not grow in time. Rather the 
waves seem to amplify spatially in a downstream direction parallel to the jet 
boundary until the shear layer is sufficiently thick where the acoustic radiation 
terminates. In  this paper a spatially amplifying wave solution is obtained which 
is used to compare with experimental results. 

The structure of a round underexpanded supersonic jet is rather complicated 
(see Ollerhead 1969; Adamson & Nicholls 1959). Observations indicate that close 
to the nozzle exit the jet is bounded by a thin sheet of shear layer. The initial 
thickness of this layer depends on the boundary-layer thickness inside the nozzle. 
For a convergent-divergent supersonic nozzle it is usually very thin. The shear 
layer becomes thicker and thicker in the downstream direction due t o  intense 

,Shear layer 

Supersonic core 

Expansion fan 
FIGURE 1. Structure of an underexpanded supersonic jet close to the nozzle exit. 

mixing of the jet and ambient fluid (figure 1). In the core of the jet the fluid 
velocity is supersonic but the core size decreases as the mixing layer develops. 
Right at the end of the nozzle the jet fluid usually undergoes simple expansion 
until the pressure becomes equal to that of the ambient. Alittle way downstream 
three or four jet diameters away, weak shock waves can usually be found. Shadow- 
graphic observations (see figure 7, plate 1) show that strong unidirectional 
acoustic waves are emitted from the shear layer close to the nozzle exit. This 
acoustic radiation terminates somewhere downstream where the shear layer 
becomes sufficiently thick and usually before the first shock interacts with the 
shear layer. 

To discuss the observed acoustic radiation taking into consideration all the 
complex flow structures of an underexpanded supersonic jet is beyond the scope 
of this paper. Here our aim is to examine the generation mechanism of these 
acoustic waves in relation to the proposed theory. For this purpose we will adopt 
a simplified model taking into account only the essential details of the jet. 

In  a supersonic flow as existed near the exit of a nozzle, the effect of compres- 
sibility and the inertia of the fluid play a dominant role in the dynamics of the jet. 
Viscous effects are not very important except in the thin shear layer. As a model 
for the jet in our proposed theory we will assume that the fluid is inviscid and the 
thickness of the shear layer infinitesimal. The fluid velocity in the core of the jet 
will be considered uniform and parallel to the jet axis (see figure 2). The simple 
expansion which the jet fluid undergoes when leaving the nozzle will be neglected. 
This approximation is believed to be adequate since the expansion is usually 
weak unless the jet is operating quite far from its design point. Also from the 
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observed wavelength of the acoustic radiation one can estimate that only a rela- 
tively thin layer of jet fluid adjacent to the shear layer is important in the 
proposed shear layer instability. The velocity of this layer as a first approximation 
can be regarded relatively uniform. 

She& layer 
Excitation of shear layer by 
turbulence Convected out of n o d e  

FIGURE 2. Model of a supersonic jet close to the nozzle exit. 

It can be shown (following Briggs 1964, chapter 2) that the present shear layer 
instability is convective in the downstream direction (for a detailed discussion of 
the concept and properties of convective instability see, for example, Sturrock 
(1958), and Briggs (1964)). For convective instability the unstable waves propa- 
gate away in the downstream direction from the place where they were originally 
initiated. There is very little upstream influence. Because of this lack of upstream 
influence on the part of the unstabIe waves the presence or absence of the nozzle 
is not at  all vital. In  fact, the only important function of the nozzle is that it 
defines where the unstable waves begin. With this in mind, we will, in our simple 
model, extend the shear layer all the way upstream with the nozzle exit and the 
excitation of the shear layer by turbulence convected out of the nozzle simulated 
by a time-dependent pressure fluctuationf(0, t )  S(x) located at x = 0 as shown in 
figure 2 ( r ,  8, x are cylindrical co-ordinates). Without great loss of generality, 
the pressure fluctuation will be considered as stochastically stationary and 
quasi-periodic. In  this case the function f(0, t )  can be represented by a double 
Fourier series, f(8, t )  = C A,, ei(ns-mut). (1) 

n, m 

In  $2, the mathematical problem of shear layer instability under the influence 
of a periodic forcing function will be formulated. An asymptotic solution in the 
sense of long time response is obtained by using the Fourier-Laplace transform 
method and properly evaluating the poles in the two transform planes. It is 
found that this solution exhibits all the essential features of the directional wave 
pattern observed in shadowgraphs of a supersonic jet. 

In  $4, we compare the angle between the parallel straight lines formed by wave 
crests and the shear layer of the jet boundary as given by the theory with the same 
angle measured on shadowgraphs. Cold nitrogen and cold helium jet shadow- 
graphs are used. Good agreement is found in both cases. The present theory also 
predicts that these directional waves are confined to  a sector of space downstream 
of the nozzle exit. The acute angle of this sector calculated from the theory also 
agrees quite well with the measured angle. 
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2. Formulation 
We consider two ideal fluids occupying the space r > R (R  = radius of jet) and 

r < R, designated by the subscripts + and - , respectively) as shown in figure 2. 
We will denote the sonic velocities and fluid densities in these two regions by 
a& and p+ The fluid inside the jet will be assumed to have a uniform velocity u 
parallel to the x axis. The vortex sheet separating the two fluids at  the jet 
boundary is subjected to a localized time and angular dependent sinusoidal dis- 
turbance located a t  x = 0. We wish to examine the fluid motion after the sinu- 
soidal disturbance has been introduced for a long time. 

On assuming small disturbances, the equations for the perturbation pressures 
are 

(2) r > R  a2p+lat2 = a2,V2p+; 

r < R  (3) 

The dynamic and kinematic boundary conditions at  the vortex sheet 

Other boundary conditions are 

p- is  finite as r+07 

p++O as r+oo for finite t .  

In  (5) only one Fourier component of (1) is included. This is permissible since the 
problem is linear. Other components can be accounted for by superposition. 
Without loss of generality the frequency v in (5) will be assumed to be positive. 
Further, we will make the simplifying assumption that the specific heat ratios 
of the two fluids are equal so that from the condition of equilibrium a t  the 
unperturbed state we have 

p+a$ = p-a-. 2 

(The general case when the specific heat ratios of the two fluids are different can 
be extended in a straightforward manner.) 

We propose to solve the above problem by the method of the Fourier-Laplace 
transform. We define P&, the Fourier-Laplace transform of p k ,  as 

On applying the Fourier-Laplace transform to (2)-( 7))  a straightfornard calcu- 
lation eives 
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where Q = &/a+, h = kR, 
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J, and HE) are the Bessel and Hankel function of the f i s t  kind, respectively, 

In  obtaining (10) we have put all the initial conditions equal to zero. In  the 
present problem any initial disturbances (including those that are unstable) will 
be convected away and, therefore, they are unimportant as far as the long-time 
response is concerned. 

J 2 5 )  = dJ,(S)/dE. 

3. An asymptotic solution 
A complete study of (lo), as obtained in the above section, is rather lengthy 

and will not be reproduced here (extensive numerical work is necessary). Instead, 
we observe from shadowgraphs that the relevant wavelengths of the directional 
acoustic wave are very small compared to  the radius of the jet. That is to say, the 
corresponding value of Ihl in (10) is extremely large. For large values of Ihl, the 
following asymptotic formula for J, and HE) are available. 

In  what follows we will use the asymptotic expression of (12) instead of (10). 
Physically this means that we consider only the contributions of the short waves. 
The long waves are important in other phenomena of the jet involving scale 
lengths of the order of the jet diameter. In the present physical problem they are 
not so relevant. Mathematically (12) amounts to retaining only the leading term 
of an asymptotic expansion of (10). The neglected terms are of the order of 
(111W 

From (12) and (9) the pressure distribution for r > R is given by 

The poles of the integrand in (14) have been studied by Miles (1958) who con- 
cluded that: (a) the vortex sheet is unstable if u < (a$ +a!)#; ( b )  the function 
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(P+(c)+P-(c)) has no complex zeros and hence does not give rise to unstable 
poles; (c) in the unstable case, the zeros of the function (P+(c) &(c) + 1) are the 
two complex conjugate roots of (/3:/3! - l), i.e. the complex solutions of 

The two roots of (P+p-- 1) are real. 
Let us denote the two complex roots of (15) by 

c+ = c, & i C i  (Ci > O),  (16) 

P+(c+) = P r  + ;Pi (Pi > 0). (17) 

and the corresponding value of p+(c+) by 

We note that c& are constants depending only on the parameters a-/a+ and ./a+. 

FIC&E 3. Mapping of left half c plane on the F plane. 

By mapping the function F(c)  along the contour AOBD as shown in figure 3 in 
the c plane, we see that the corresponding contour in the P plane encircles the 
origin three times. Hence three of the roots of F(c) have positive real parts. This 
implies that c, in (1 6) is positive. 

In  this paper we will assume that u < (a$ +a%)*, so that the vortex sheet is 
unstable. Now let us evaluate integrals (13) and (14) asymptotically for large t.? 
In  the past, some confusion arises as to how the contours in the complex w and k 
planes of these integrals should be deformed in relation to the poles of the 
integrand. This problem was examined by Briggs (1964, chagter 2) and a correct 
procedure was given by him. In  this paper we will follow his method. Let us 
choose initially a contour with Im (w)++co for the integral in (13) and slowly 
deform it towards the real axis in the w-plane (see Briggs 1964, chapter 2) as 
shown in figure 4. In  the k plane, the poles of the integrand in (10) are related 
t o  c and w by 

where w = w, + iwi. 

also led to the same results as obtained below. 
t An alternative way of evaluating these integrals was suggested by a referee which 
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If we let w, = v, we have 
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vci 
(c; + cf) a+' 

vci 
(c; + ct ) a+ * 

Re {k+} -+ , Im{k+)+- 
(cf + cf) a+ 

Re {k-} + , Irn{k-)++ 

as wi-+O, 

FIGURE 4. Inversion contours in the w and k planes. 

Therefore, the two poles, k*, lie in the upper half k plane originally. As the 
inversion contour in the w plane is being pushed towards the real axis, the contour 
in the k plane must be deformed so that it remains below the two poles as shown 
in figure 4. This is required since the integral will become undefined if a pole 
crosses the inversion contour in the Ic plane. As t -+ co, the dominant contribution 
to (13) and (14) comes from the pole w = v in the w plane and the pole k = k+ in 
the k plane; k+ is the pole which moves below the real k axis. The contributions 
from the other pole, etc., will be neglected as they do not give rise to  amplifying 
waves. Thus on completing the contours of integration by adding appropriate 
large semicircular paths in the upper or lower half plane, we obtain asymptotically 

0 ( x  < 0); 
cix - (cJi - ciPr) (r - R)  Y 

c; + Cf -1 a+ 

exp (i [w+ (C,P,+CiPi) c; + Cf ( r - W  - a + t ] c + i n ~ ]  (x > 0); 

const. exp 

0 (x < 0). 

(19) 

or 
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The amplifying wave solution (19) shows that the disturbance consists of 
a spatially dependent amplitude and a wave-like oscillatory part. The disturb- 
ance is exponentially small to the left of the line. 

cix-(c,/3i-ci/3r)(.-R) = 0 (20) 

(21) 

as shown in figure 5 .  This line makes an angle + with the x axis, the tangent of 
which is given by tan4  = ~~l(c,/3~--~~/3,). 

- 
21 ( P - ,  a - )  - 

FIGURE 5. Pattern of acoustic disturbance. 

The amplifying wave solution grows exponentially in the x direction. When the 
amplitude becomes sufficiently large, non-linear effects can no longer be neglected 
and the present solution does not apply. However, because of the lack of upstream 
influence in a convective instability the present theory is meaningful for small 
values of 2, i.e. close to the nozzle exit. 

Further, on a plane 0 = constant (or in the case n = 0) the disturbance consists 
of wave crests and troughs which are straight lines. These straight lines are given 
by the equation 

c,x + (c,B, + cipi) (T - R) - a+(c: + cs) t = constant. ( 2 2 )  

tan 0' = - C~/(C,/~~ + c ip i )  (23) 

0 + +  = g,, 0 = n-8'. (24) 

The slope of these parallel lines is 

as shown in figure 6. In  appendix A, it will be shown that 

From (22), the velocity of these lines (on a plane 0 = constant) is found to be 

This velocity is, in general, unequal to the sound speed a+. This seems to be 
a rather strange result especially in the case n = 0. To understand this puzzling 
phenomenon one must bear in mind that we are dealing with unstable waves. 
From previous results on the propagation properties of unstable waves (see Tam 
1967; Briggs 1964) it is known that the motion of the wave front of unstable 
waves is strongly influenced by the growth rate. This is what happens in the 
present problem. In  order t o  demonstrate that unstable waves do not always 
propagate with the speed of sound, we carry out further some calculations on the 
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initial-value problem of an unstable vortex sheet set in motion by a sinusoidal 
initial disturbance considered by a l e s  (1958) in appendix B. It is shown that in 
this problem the lines of constant phase also do not, in general, propagate with 
the velocity of sound a+. So the result (25) is not to be viewed with suspicion. 
Actually, it offers a means of verifying the proposed instability theory experi- 
mentally. 

4. Comparison with experiments 
Shadowgraphs of noise pattern from cold supersonic jets are available in 

publishedform (Ollerhead 1966; Lowson & Ollerhead 1968; Dosanjh & Yu 1969). 
In  this section we want to compare the directional waves observed in these 
shadowgraphs with directional waves predicted in the previous section by 
assuming that these waves are generated by shear layer instability at the jet 
boundary. In  the analysis above, the calculation was carried out for a jet of 

/ 
/ 

Tangent to shear 
layer of j e t  
boundary 

FIGURE 6. Angular measurements for an underexpanded jet. 

constant radius. However, for an underexpanded or an overexpanded jet, the 
jet boundary near the nozzle exit is slightly curved, i.e. R is not a constant. In  
order to compare theory and experiment we will measure all relevant angles of 
the disturbance pattern not relative to the jet axis, but rather from the tangent 
to the jet boundary as shown in figure 6. We note from these shadowgraphs that 
when the jet boundary is sufficiently curved, the directional waves are no longer 
very straight. We believe that an improved analysis based on a curved vortex 
layer could account for this effect. 

Good-quality shadowgraphs taken by Ollerhead (1966) are available as 
figure 19 in a report by Potter (1968). Table 1 is a comparison of the observed 
angles, 0 and q5 and the angles as calculated by equations (21) and (23). 

It is clear from table 1 that there is good agreement between theory and 
experimental results. 

The above experimental data were obtained from a cold nitrogen jet. But in 
practice, e.g. the jet of an aircraft, the jet is hot. A hot jet has the properties that 
the density of the jet fluid is less than that of the ambient while the speed of 
sound is greater than that of air outside. To simulate a hot jet and to further 
verify the above theory we carried out a series of experiments using a helium jet. 
Helium has lower density and higher sound speed than air and is therefore ideal 
to use. In  our experiment a spark source with a life time of 4,usec was used. The 
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experimental procedure employed was similar to that of Lowson & Ollerhead 
(1968) and will therefore not be described. Figure 7 (plate 1) is a typical shadow- 
graph showing the sound field of a supersonic helium jet obtained. Since helium 
and air have different specific heat ratios, the above analysis was extended to 
account for this effect. Table 2 shows a comparison of theoretical and experi- 
mental results. Again, there is good agreement between theory and experimental 
results. 

Calcu- Calcu- Observed, 
Case PE/Po aJa+ u/a+ Observed lated Observed lated @+$ 

1 1  0.671 1.658 50" 50"4' 40" 39'55' 90" 
2 1.53 0.630 1.736 51" 50'40' 38" 39'20' 89" 
3 1.98 0.608 1.775 51" 50" 48' 38" 39" 12' 89" 

Note. (i) Values of aJa, and u/a+ are calculated by assuming isentropic expansion from 
ambient stagnation temperature: see Lowson & Ollerhead (1968). (ii) The observed angles 
have an uncertainty of 2-3". 

TABLE 1. Nitrogen jet 

e 
& 

Case Psia aJa+ u/a+ Observed lated 
1 54.7 2.259 3.253 35" 33'39' 
2 74.7 2.122 3.518 33" 34" 1' 
3 104.7 1.984 3.753 33" 33" 16' 
4 114.7 1.948 3.809 32" 32" 51' 

pt Calcu- 

(Pt = chamber pressure) 

TABLE 2. Helium jet 

4 
& 

Observed lated O+$ 
54" 56" 21' 89" 
59" 55'59' 92" 
58" 56'44' 91" 
59" 57O9' 91" 

Calcu- Observed 

To conclude, we believe that the directional sound waves radiated from the 
shear layer of a supersonic jet is the direct result of instability of the shear layer. 
Experimental results are found to confirm the overall acoustic field pattern pre- 
dicted by the theory of instability. Based on the present results, it seems likely 
that acoustic radiation can also be generated by instabilities under similar con- 
ditions in wakes and possibly even in boundary layers. Further work on this area 
is desirable. 

The author wishes to thank Mr Arturo Rosales for his assistance in the experi- 
mental part of this paper. Part of this work was supported by NASA under 
Grant NGL 22-009-383. 
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Appendix A 
In  this appendix we want to show that 0 + q5 = &r. From (12) we have 

P?(C+) = c; - 1. 

P r  Ps = cr ~ 5 ,  

(A1) 

(A2) 

pr"-p; = c;-c;-1. (A 3) 

By means of (A 2) and (A 3), it is straightforward to show from (21) and (23) that 

tane'tanq5 = -1, 
and hence 0 + = gn. 

By equating real and imaginary parts we obtain 

Appendix B 
Miles (1958) considered an initial-value problem of a vortex sheet set in motion 

by an initial sinusoidal disturbance. Here we want to complete his analysis by 
obtaining the pressure field and to show that the lines of constant phase for the 
unstable wave do not propagate in general with the speed of sound as found also 
in the present problem (25). For the purpose of illustrating this point we will 
assume 

u+ = 0, u- = u, p+aF = p-a? (u is in the unstable range). 

From equation (4.8) of Miles's paper we find that the pressure in the region above 
the vortex sheet is given by (the notation of Miles is used) 

The poles and branch cuts of the integrand of (B 1) are similar to that given 
in figure 8 of Miles's paper. For large time, the contribution from the unstable 
pole dominates, hence on deforming the contour as Miles did, we obtain 

+ contributions from branch cuts and damped pole; 

c+ = c, + ic,, P+ = $, + ipi. 
- constant eiab+PrV+rt) eW-Ptv), 

Lines of constant phase are given by 

x+P,y-c,t = constant. 

These lines propagate with velocity 

which is, in general, unequal to a+. In  Miles's problem the unstable wave covers 
the region -GO < x c 00 and is therefore slightly different from the jet noise 
problem considered above. 
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